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P O L Y H E D R A L  2 - M A N I F O L D S  IN E 3 
WITH U N U S U A L L Y  L A R G E  G E N U S  

BY 

P. McMULLEN, CH. SCHULZ AND J. M. WILLS 

ABSTRACT 

An equivelar polyhedral 2-manifold in the class J~p,q is one embedded in E' in 
which every face is a convex p-gon and every vertex is q-valent. In this paper, 
examples are constructed, to show that each of the classes J//~., (q _-> 7), o(/4., 
(q = 5) and ~p,4 (P => 5) contains infinitely many distinct combinatorial types. As 
particular examples, there are polyhedral 2-manifolds with 576 vertices and 
genus 577, and with 4096 faces and genus 4097. A modification of one 
construction shows that there is a constant k, such that for each g _-> 2, there 
exists a closed polyhedral 2-manifold in E ~ of genus g with at most kg/logg 
vertices. 

w Introduction 

A polyhedral 2-manifold or, more  briefly (and only for the purpose  of this 

paper) ,  a polyhedron is a closed (that is, lacking bounda ry )  topological  2- 

manifold  M in some  eucl idean space E e, which is the under ly ing point-set  of a 

geomet r i c  2-complex,  in the sense of, for  example ,  G r i i n b a u m  [5], w Thus  the 

faces or 2-cells of M are convex  polygons,  the 0- and 1-cells of M are similarly 

also re fe r red  to as its vertices and edges. We shall also usually d e m a n d  that  

ad jacent  faces,  which share a c o m m o n  edge,  not be paral lel ;  f rom a theoret ical  

v iew-point ,  this r equ i r emen t  may  be unnecessary ,  and in any case is usually not 

difficult to impose  in what  we do below. Since we are also concerned  here  with 

such po lyhedra  which can be e m b e d d e d  in E 3, and so are necessari ly or iented,  

we confine our  a t ten t ion  to o r ien ted  po lyhedra .  

We  write )~ ( M )  for  the n u m b e r  of j-cells  of a po lyhedron  M for  j = 0, 1,2 

(strictly speaking,  ]~ ( M )  is the n u m b e r  of j-cells  of the under ly ing cell complex ,  

but  it is usually unnecessary  to m a k e  this distinction). The  proof  of H e a w o o d ' s  
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map colouring conjecture by Ringel and Youngs [8] exhibits a certain sequence 

M~ (g => 0) of polyhedra of genus g, with 

fo(M)  = ]�89 + x/48g + 1)[ 

(]x[ denotes the smallest integer = x )  for g / 2  (and f0(M2) = 10), which for 

simple combinatorial reasons are the minimum possible. Now for the trivial case 

g = 0, and the more complicated cases g = 1 solved by Csfisz~ir [4] and g = 2 and 

3 solved by Brehm [2], there are polyhedra M, with this minimal number of 

vertices embeddable in E3; in general, however, whether such polyhedra Mg are 

embeddable in E ~ is an open question. In fact, it is even unknown whether it is 

possible to achieve fo(Mg)= O(g ~) for some a < 1; hitherto, the best bound is 

f,)(M) < fig + c~, for any/3 > ~ and some cr which is due to Schulz [9]. One of 

the main results of the present paper is to improve this bound to fo(Mg)= 
O (g/log g). 

The "dual"  problem, that of minimizing f2(Mg), seems to be even less 

tractable. Here, of course, the fact that the faces have to be convex imposes a 

strong restriction. For example, if all vertices are 3-valent, M, must be the 

boundary of an ordinary convex polyhedron (and this remains true for embedda- 

bility in any E~; see Grfinbaum [5], exercise 11.1.7). For such reasons, perhaps 

we should not expect results as strong as for f0(Mg); indeed, here we can only 

obtain f2(M,) = O(g/logg) for a subsequence of values of g. 

On the general question of embeddability of polyhedra, let us merely remark 

that, from a result of Perles (compare [5], 11.1.8), it follows that if a polyhedron 

M is embeddable in some euclidean space E ~, then an isomorphic polyhedron 

(in fact an affine image of M) is embeddable in E 5. In particular, the polyhedra 

of Ringel and Youngs [7], which have triangular faces, are so embeddable 

(because each simplicial k-dimensional complex is embeddable in E2k+l). 

Our approach to these problems uses a concept introduced in an earlier paper 

(McMullen, Schulz and Wills [6], which in the future we refer to as Msw) ,  which 

is also of independent interest. We say a polyhedron M is equivelar of type {p, q} 

or in the class ~p.q, if every face of M is a p-gon and every vertex of M is 

q-valent. We also write M = {p, q;g} if we wish to put stress on the genus g of 

M. This notation, which is an obvious adaptation of that of Coxeter [3], should 

not be taken to imply the uniqueness of the combinatorial structure of M, and 

certainly not any properties such as combinatorial regularity. 

In the following three sections, then, we shall prove the three parts of 

THEOREM 1. Each of the following classes dlp, q contains infinitely many 
different combinatorial types: 
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(a) d/3.q for q > 7; 

(b) d/n,q for q > 5; 

(C) ~p,4 for p >= 5. 

By a modification of the construction which yields part (a), we shall also show 

in the last section 

THEOREM 2. There is a constant k, such that, for each g > 2, there exists a 

polyhedron M~ of genus g, with 

fo(Ms) < kg/log g. 

w The construction of {3, q} 

Before describing our construction of the polyhedron {3, q} geometrically, we 

give a purely combinatorial description of a rather more general idea. 

Let M be a (combinatorial) polyhedron, and let Fl," �9 ", Fn be n disjoint faces 

of M. If, for i = 0, 1, M i is an isomorphic copy of M, with corresponding faces 

F;1," �9 ", F~., then we can delete the faces F ~ of M ~ and FJ of M 1, and for each j, 

join the boundaries of F ~ and FJ by a tube of quadrangles. We then obtain a new 

(combinatorial) manifold N, with 

fo(N) = 2fo(M), g(N)  = 2g(M) + n - 1. 

The quadrangles of each tube can be split into pairs of triangles - -  in many 

different ways, of course - -  but in exactly two ways will there be three new 

triangles meeting each original vertex of Mo (and of M~). 

In our applications, M will be a polyhedron {3, q}, and the triangles Fj will 

cover the vertices of M (exactly once), so that n = �89 It is then clear that, 

with either of the two special choices of splitting the quadrangles of the tubes, N 

will be of type {3, q + 2}. We refer to this procedure as method D (compare 

MSW, w 

The combinatorial idea behind our construction is thus very simple. The 

difficulty arises when we try to realize the construction geometrically in E 3. Our 

method will be inductive in two senses: firstly (and more easily) M must have 

such a set of disjoint faces covering its vertices; secondly, M must be geometri- 

cally suitable, in a sense which we now make precise. In fact (and herein lies the 

basic trick), our M will not strictly speaking be a polyhedron of type {3, q} at all, 

since certain of its adjacent faces will be coplanar. This trivial disadvantage we 

shall overcome at the end of our constructive procedure. 
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So, we call a polyhedron M of type {3, q} special if M itself is obtained from a 

polyhedron L of type {3, q -2}  by method D, in such a way that the following 

three conditions hold. 

(1) The copies L ~ and L ~ of L satisfy L ~  1 =(~. 

We can, in fact, assume that L I C I ( L ~  the interior (that is, bounded) 

component of E 3 \ L ~  however, the relationship between L ~ and L ~ is 

symmetrical. 

For each cell F of L, with corresponding cells F ~ of L ~ (i = 0, 1), we write 

Q = conv(F~ F1); similarly, Qj is obtained from the cell Fj of L. Then 

(2) If  F, F~, F2 are cells of L with F1 n F2 = F, then Q~ n Q2 = Q. 

The final condition concerns the deleted faces of L. If F = abc is a deleted face 

of L, we write F ~ = a ~b~c ~, and so on. Then 

(3) The tube based on each deleted face abc of L satisfies : 

(a) the pairs of edges a~ ~ a~b ~ and a~ ~ a~c ~ are parallel; 

(b) the interior component I ( M )  is convex at the edge b ~ c ', that is, the non-edge 

b~c ~ lies in clI (M).  

Note the conditions (3), and the fact that M is obtained by method D, imply 

that a~ ~ and alc ~ are edges of M, and that the pairs of faces a~176 ~, a~ ~ and 

a~ lc~ a ~c~ ~ are coplanar. Conditions (1) and (2) are clearly independent, and 

together have the following implication. 

LEMMA 1. If  L ~ and L 1 satisfy (1) and (2) above, then for each cell F of L, 

Q n L '  = F '  for i =0 ,1 .  

We first observe that we can confine our attention to faces F. For, a general 

cell F can be expressed as F = AFj ,  where the Fj are faces; if the lemma holds 

for faces, then 

O n L ~  ~ n ( o ,  nL~ = n F ~  ~ 

as required. 

So, suppose that F is a face, such that Q n L 0 ~ F o, so that (Q \ F ~ n L 0 ~ O. 

Hence there is a face F~ ~ F, such that ( 0  \ F  ~ n F ~  0 .  Now, F n F~ = F2 ~ ~ ,  

otherwise Q n F~ C_ Q n Q~ = Q2 = Q. Since, by (1), F ~ n L 1 _C L ~ n L 1 = O, F ~ 

F3 ~ F2, such that ( Q \ F~ N F~ ~ f~. Now F N F3 = F4 ~ f~, has some edge 0 0 

otherwise Q n F ~ _c Q n Q3 = Q4 = O, so that F4 is a vertex, and Q4 is a line 

segment. From 
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(~ ~ (Q \ F  ~ N F ~ = (Q n F~ ~ n F ~ = (O n F~3)\F ~ q Q4\F~, 

and (again by (1)) F ~ N L 1 = ~ ,  follows F ~ C Q4. Hence the other vertex F~, say, 

of the edge F ~ lies in Q4. But F4 n F5 = Q, so that F~s C_ Q4 N F ~ _C Q4 n Q~ = •, 

and thus we have obtained our required contradiction. This proves Lemma 1. 

This result can be interpreted as saying that if L ~ and L 1 satisfy (1) and (2), 

then each Q lies between L ~ and L 1. More precisely, if E ( L  ~) is the exterior 

(unbounded) component  of E d \ L ' ,  then Q c cl(I(L ~ n E(L' ) ) .  

Moreover,  for each cell F of L, Q has opposite faces (in the sense of convex 

sets) F ~ and F 1. If dim F = 1, then Q is a quadrangle or tetrahedron; otherwise, 

dim Q = dim F + 1. In case dim F = 1 or 2, the vertices of F also give rise to 

edges of Q, joining the corresponding vertices of F ~ and F ' .  

Before our next Lemma, we introduce some notation. Let L ~ L ~ satisfy (1) 

and (2). If a is a vertex of L, for 0 <  A < 1 we write a ~ = (1 - A)a~ Aa'. If the 

face F of L has vertices a, b and c, we write F * = conv{a ~, b ~, c * }. Finally, we 

write L A for the union of these triangles F x. 

LEMMA 2. L ~, as defined above, is a polyhedron naturally isomorphic to L, 

and, with L A replacing L 1, L ~ and L ~ satisfy conditions (1) and (2). 

For the first part, we must show that if F, F~ and F2 are cells of L with 

F, n F2 = F, then F~ fl F~ = F ~. Certainly, we have F~ n F~ _D F ~. If F = Q, then 

F~' n F~ C_ Q1 N Q2 = Q = Q; so we have equality in this case. Otherwise, we can 

check the result case by case (according to the dimensions of the cells); the only 

case that can cause problems is when F~ and F2 are faces sharing a common edge 

F, and this leads to disjoint cells F3 G F1 and F4 C_ F2 with F~ n F~ y/Q,  which is 

already excluded. 

Next, for condition (1), suppose L ~ n L ~  Q. Then there are cells Fo, F~ of L, 

with F ~  But F ~  ~  ~ by Lemma 1, and hence 

F~ n F~ ~ Q. But this is clearly impossible (compare the remarks after Lemma 

1). 
Finally, we check condition (2). If F, F~, F2 are cells of L with F1 n F2 = F, 

then, with Q* = conv(F ~ U F~), and so on, we have Q* C Q~ n Q~ _C Q, n Q2 = 

Q. The cases dim F -< 0 are thus straightforward; so, the only possible problem 

can again occur only when FI and F2 are faces sharing a common edge F, and this 

is an elementary problem in solid geometry, which we leave to the interested 

reader. (Again we refer the reader to the remarks after Lemma 1.) 

LEMMA 3. Let 0 < A </~ < 1, and let M* be constructed from L ~ and L ~ as 

M is from L ~ and L 1, with a ~ replacing a ~ and a ~ replacing a i for each vertex a of 
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L. Then M* is a special polyhedron naturally isomorphic to M, M* C cl I(M),  and 

M N M* is contained in the union of the tubes of M. 

That M* satisfies (1) and (2) follows by a double application of Lemma 2 (to 

L" and L ~, then to L ~ and L~). For condition (3a) (see Fig. 2.1), note that a~b ~, 
a"b ~ are both parallel to a~ ~ a~b ~, and hence to each other; similarly, a~c ~, 
a"c"  are parallel. Condition (3b) is also clear (consideration of the intermediate 

case M ~ obtained from L" and L "  makes it transparent). Finally, M* _C cl I (M) 
by the convexity condition (3b) for M, and M* n (L ~ U L 1) = Q by Lemmas 1 

and 2, which has the required implication about M n M*. 

Our final step is slightly to modify M*. We begin with a more general result. 

b I 

a t 

Fig. 2.1. 

LEMMA 4. Properties (1) and (2) are preserved under all sufficiently small 

perturbations of the vertices of M. 

This is clear for perturbations of one vertex, and the general case follows from 

the finiteness of M. 

Our specific modification of M* is the following. In the tube of M based on 

the triangle abc of L, we pick a point p Econv{a~176176 

From the points a ~, a",  we obtain new points 

-~ = (1 - v)p + va ~, a 

and similarly for ti ~, where v > 1. 

LEMMA 5. If v is sufficiently near 1, then the points ~ ,  g~" are vertices of a 
special polyhedron 1Q1" naturally isomorphic to M, with 1(4" C I(M). 
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This follows f rom L e m m a  4, and the remark  that  the local homothet ies  

a ~ --*ti x (a ~ ---~ ti ~) preserve the parallelism of (3a) and the properties (3b). 

Clearly, these local homothet ies  move M* into I (M) .  This situation is illustrated 

in Fig. 2.2. 

b ~  

/ 
/ 

/ 

/ 

~"L-  

C o 

\ \ \  

\ I \ 
\ i I 
\ ,. I 

b t ~- . 

a 1 

Fig. 2.2. 

The inductive step is completed by 

LEMMA 6. With IQ* as above, let M ~ = M, M 1 =/~t*,  and let N be obtained 

from M by method D, with deleted triangles from the tube based on abc being 

b ~ l a ~ and c l a ~ c ~ (with b ~ c ~ corresponding to a, and so on). Then N is a special 

polyhedron. 
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Conditions (1) and (3) are obvious (note that the local homotheties of Lemma 

5 preserve the required parallelisms for (3a), and the ordering of the vertices of 

the deleted triangles ensures (3b)). So, it remains to check (2). Now, to the 

vertices a ~ and a ~ of M = M ~ correspond the vertices fi~ and ~i ~ of AS/* = M 1, 

respectively. For the faces F ~ or F ~ of M which were originally faces of L ~ or L 2, 

(2) is easy; either the Q's  both come from L ~ and the condition follows from 

Lemma 1 (and similarly for the O's  coming from L ~), or one comes from L ~ and 

one from L 1, and the condition is trivial, since (say) Qj lies between L ~ and/7, A 

and Q2 lies between L ~ and/7. ". The remaining cases involve cells, at least one of 

which lies in a tube; these cases follow directly, by inspection (note that two 

different tubes of M cannot interfere with each other, so the checking is purely 

local). We refer the reader once more to Fig. 2.2. 

We have now established the inductive step; it therefore remains to give the 

initial examples. 

LEMMA 7. There are infinitely many combinatorially distinct special polyhedra 
in d~3,s. 

We must construct suitable pairs L ~ L ~ in ~3,6. Let m, n ~ I. Take two 

concentric and homothetic regular 3m-gons in a plane in E 3, and rotate this 

plane by angles 2krt/3n (k = 0, 1 , . . . ,  3n - 1 )  about a line in this plane which 

misses the polygons. This yields two tori, one inside the other, of which 

corresponding edges and faces are parallel. The faces of these tori are quad- 

rangles, and we divide each quadrangle into two triangles, as in Fig. 2.3, to yield 

a {3, 6}. 

V 

m=2 

Fig. 2.3. 

n = l  
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The deleted triangles are also depicted in Fig. 2.3; two sides of each are 

parallel to the corresponding sides of corresponding triangles of the other torus, 

and obviously a labelling can be chosen to satisfy the conditions of (3). 

The final example is a little more complicated. 

LEMMA 8. There are infinitely many combinatorially distinct special polyhedra 
in M3,9. 

We must first construct the suitable examples in dQ,7. Now there are infinitely 

many combinatorially distinct simple 3-polytopes P, all of whose faces are 

triangles or hexagons (in fact, all faces multi-3-gons would suffice; see [5], 

chapter 13). For such a 3-polytope P, let S(P) be its snub polytope (see [3] for the 

precise definition). To each face of P corresponds a face of S(P) of the same 

kind (triangle or hexagon); each vertex of such a face belongs to four other 

triangles, so the vertex is 5-valent; the faces corresponding to the original faces 

of P are disjoint, and cover the vertices of S(P). (For further details, see MSW, 

w 
Let L ~ = bd S(P), and from an interior point p of S(P), let L '  be a homothetic 

copy L '  = ( 1 -  v)p + uL', with 0 <  u < 1. Now delete the faces of L" and L'  

corresponding to the original faces of P, and join corresponding boundaries by 

tubes of quadrangles. Then split each quadrangle into two triangles, as in Fig. 

2.4. 

==z' 

Fig. 2.4. 

The resulting polyhedron M is not quite special, but only because some of the 

tubes are based on hexagons. But it is obvious that the method of the inductive 

construction carries over to this case, using the deleted faces indicated in Fig. 2.4. 

So, we eventually obtain infinitely many special polyhedra of type {3, 9} (since M 

is of type {3, 7}). 

This discussion completes the proof of Theorem la, when we add the remark 

that moving the vertices into general position at the end destroys any incidental 

coplanarities of adjacent faces. 

A suitable choice of a {3, 6} (as described above) with 9 vertices enables us to 

prove a slightly stronger result. 
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LEMMA 9. For each r >= 3, there is an M E JA3.2, with 9.2 '-3 vertices, two faces 

of which are faces of conv M. 

However we choose the triangle of the torus of Lemma 5 in case m = n = 1 to 

be deleted, two faces remain on the boundary of the convex hull of the ultimate 

polyhedron M. Suitably moving the vertices of M into general position preserves 

this property. 

We may also note that the case r = 9 of Lemma 9 gives a polyhedron {3, 18} 

with 576 vertices and genus 577 (compare MSW, w this is the minimal example 

of which we are aware with more "holes" than vertices. 

w The construction of {4, q} 

The construction we describe in this section for the polyhedra {4, q} is quite 

different from that for {3, q}. (There is, in fact, an analogous construction which, 

in contrast to {3, q}, has some symmetries, but it is somewhat longer, and we 

therefore omit it.) Here, we begin by building up what we shall call a corner of 

the polyhedron by an inductive method, and only at the end do we fit these 

corners together (compare Figs. 3.1-3.4). 

At the q-th stage (q > 4), a corner will have 2 o-4 vertices, each of which lies in 

q - 2 faces (which may be finite quadrilaterals, or infinite half-strips or quarter- 

planes) and q - 1 edges. Of these q - 1 edges, q - 3 will be tied, that is, shared by 

two faces, and the other 2, both of which are half-lines, are free. The corner will 

lie in the non-negative orthant, and one set of free edges (which we call 

horizontal) will be parallel to the x-axis, while the other (vertical edges) will be 

parallel to the z-axis. Through each vertex will also pass a tied edge, also a 

half-line, which is parallel to the y-axis. In addition, all the free edges E will be 

visible from the direction (0, - 1,0), which means that the infinite quart.er-planes 

or half-strips 

E +{A(0 , -1 ,0 ) IA  >0} 

meet each other and the faces of the corner in common edges at most. Initially 

(in case q = 4), we have two quarter-planes meeting at a common edge. 

Our construction proceeds as follows (Figs. 3.1-3.4, free edges with heavy 

lines). We choose a plane H perpendicular to the x-axis which cuts all the 

horizontal infinite edges, and has all the vertices of the corner strictly to one side 

of it. Truncate the corner by H, discarding the part containing no vertices, and 

adjoin to the truncated corner its reflected copy in H. So, the number of vertices 

has doubled. We can now choose a, /3 > 0, such that the new infinite faces 
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1,-/3)1 * =>0}, 

where E is a free horizontal edge (which is now finite), are such that their infinite 

(free) edges and the vertical free edges (old and new) are all visible from 

( 0 , -  1, 0). (First take a = 0 and choose /3, then increase or.) We now apply a 

shear, which takes the y- and z-axes into themselves, and makes ( a , -  1, - / 3 )  

parallel to the x-axis. This preserves visibility from (0, - 1,0), and gives us our 

new corner, increasing q by 1. 

We fit the corners together as follows. Take the corner at stage ql Let m, n => 2. 

f 
f 

/ 

Fig. 3.3. Fig. 3.4. 
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Perform a shear taking the y- and z-axes into themselves, and taking the x-axis 

into the xy-plane, with an angle ~- - 7r/m between it and the z-axis. Truncate 

the corner by planes perpendicular to the free edges (as before, the vertices all 

lie to one side); the angle between these planes is 7r/m. We now fasten together 

the 2m copies obtained by repeated reflexions in these planes. 

Now, all the free edges (which form 2m-gons) are visible from some direction 

making a (small) non-zero angle with ( 0 , -  1,0). Perform a shear making the 

angle between this direction and the y-axis ~r - 7r/n ; say the new direction is e. 

Adjoin all the faces 
E + {ire I ~ --> 0}, 

where E is a free edge, and truncate by planes perpendicular to the two sets of 

infinite edges; the angle between these planes is ~r/n. Finally, we fasten together 

the 2n copies obtained by repeated reflexions in these planes. 

We easily check that the resulting manifold is of type {4, q} with 2q-Zmn 
vertices, and hence with genus (q-4)2q-Srnn + 1. Figure 3.5 shows the case 

q = 5 ; m = 2 ,  n = 3 .  
Manifolds of type {4, q} isomorphic to those constructed above for m = n = 2 

are contained in the 2-skeleton of the q-cube (see Ringel [7]). 

Fig. 3.5. {4,5;7}. 
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w The construction of {p, 4} 

Our construction for the polyhedra {p, 4} is quite similar in spirit to that for 

{4, q }. We first build a block of 2 p-4 p-gons, which are attached along certain of 

their edges, and only at the end do we fasten copies of this block together to 

form the polyhedron. 

Let C be the infinite cylinder in E 3 bounded by the four planes 

x = 0 ,  x = l ,  y = 0 ,  y = l .  

Each polygon in the block will have four consecutive sides lying in the faces of C, 

and thus also three consecutive vertices (all four if p = 4, of course). We suppose 

these vertices to have coordinates (x, y, z) satisfying 

(x ,y )=(0 ,1 ) ,  (0,0) and (1,0). 

We say a vertex of a polygon in the block is of type k if it lies in k polygons of the 

block. The three vertices just mentioned will be of type 1 (all four if p = 4), the 

two remaining vertices of each polygon lying in the faces x = 1 and y = 1 will be 

of type 2 (for p => 5), and all the rest of the vertices will be of type 4 (for p => 6). 

Each of these last vertices is complete, in the sense that the four polygons fit 

together in a circuit around the vertex, so that all edges through the vertex are 

tied (belonging to two polygons). Through the remaining vertices pass two free 
edges, each belonging to only one polygon. The situation we have just described 

is illustrated in Fig. 4.1, which is a view from above of a typical polygon of the 

block; the label attached to each vertex is its type. 

1 

2 4 

I1 1 
p =5 p =8  

Fig. 4.1. 

We can now describe the inductive procedure we use. Let us suppose thaf 

p => 5, and that we have already constructed the block of 2 ~-5 (p - 1)-gons. Since 

there is a plane x = A which strictly separates the vertices of the block in x = 1 

from the remaining vertices, we see that we can perform a shear (of the form 
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(x, y, z)--* (x, y, z - / x x )  for some/x) ,  so that all the vertices in x = 1 lie strictly 

below all the rest (see Fig. 4.2). Translating in the z-direction, we can suppose 

that z = 0 strictly separates these two sets of vertices. We next truncate the block 

(and each (p -1 ) -gon)  by z = 0 (discarding that part in z < 0), and take the 

union of the truncated block with its reflected copy in z = 0 (see Fig. 4.3). We 

1 

1 2 

1 

x = A  
Fig. 4.2. Fig. 4.3. 

now have a block of 2 p-4 (p - 1)-gons. To the vertices of type 1 and 2 that lay in 

x = 1 now correspond vertices of type 2 and 4, respectively; the types of the 

remaining vertices are unchanged. Now we can find a vertical plane, of the form 

x = ay  +/3 (a,/3 > 0), which strictly separates all the new vertices of type 2 from 

all the remaining vertices (the other  vertices in y = 0 are those of type 1 lying in 

the line x = 0 - y). We next truncate the block by this plane, creating a block of 

2 p 4 p-gons. In each polygon, the vertex of type 2 is replaced by two adjacent 

vertices, of types 1 and 2. We complete the inductive stage of the argument by 

performing a suitable projective transformation of E 3 which takes the planes 

x =0 ,  y = 0  and y = 1 into themselves, and x = ay  +/3 into x = 1; such a 

transformation is 

1 
(x,y, +/31y, z). 

These last steps are illustrated in Fig. 4.4. We may observe that a modification of 

this construction (using truncated half-strips or truncated half-planes, which then 

have to be truncated at the end to produce polygons) would enable the 

employment  of projective transformations to be avoided. However,  the con- 

struction is then possibly less intuitive. 

We now fit copies of our block together to form {p, 4}. Let  m, n-> 2 be 

arbitrary integers. As in the previous construction, we first perform a suitable 

shear, but now we suppose that our truncating plane is z = (cot(~' /m))x (z = O, 
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2 4 

2 4 

J 
Fig. 4.4. 

2 

as we had originally, is just the case m = 2). We then fasten together the 2m 

copies of the truncated block, obtained by repeated reflexions in the planes x = 0 

and z = (cot(Tr/m))x, to obtain a ring. The only incomplete vertices now lie in 

the planes y = 0 and y = 1, and are all of type 2. 

For  our last step, we perform a projective transformation of E 3 taking y = 0 

into itself and y = 1 into x = (cot(Tr/n))y. (Alternatively, we truncate the ring by 

a plane slightly perturbed from y = 1, but not parallel to it, and then perform a 

suitable affine transformation.) We then fasten together the 2n copies of the 

ring, obtained by repeated reflexions in y = 0 and x = (cot(Tr/n))y. All vertices 

are now complete, and are of type 4. 

Thus we have a polyhedron M = {p, 4}, with 

[2(M) = 2 m .  2n -  2 p-" = 2P-2mn. 

Hence, either directly, or by reference to MSW, we have 

[o(M) = p" 2P-'mn, [~(M) = p .  2~-3mn, 

and so 

g(M) = (p - 4)2P-Stun + 1. 

In particular, we observe that, if p => 12, then 

g(M)> [z(M), 

so that M has more "holes"  than faces. In particular, we have an example of a 

{4, 12} with 4096 faces and genus 4097; we know of no such .example with fewer 

faces. 

We may also observe that this construction answers a question of Barnette [1], 

showing that there are polyhedra in E 3, whose faces all have arbitrarily many 

sides. 
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We mention finally that in MSW fig. 6 shows the above construction for the 

simple case {5, 4; 5}. 

w Polyhedral manifolds with few vertices 

In Section 2, we constructed sequences of polyhedra {3, q} in E 3, and, in 

particular, we found the minimal examples {3, 2r} (r => 3), with 

fo = 9 . 2  '-3, g = 3(r - 3)2'-' + 1, 

and hence with fo = O ( g / l o g  g)  for this special sequence of values of g. To prove 

Theorem 2, we must obtain such an estimate for all g. 

Let us write fo(r), g ( r )  for these values above. 

Theorem 2 clearly follows immediately from 

LEMMA 10. For each r >-_ 3 and  each 0 <= g <-_ g(r) ,  there is a polyhedron M 

with g ( M )  = g and  fo (M)  <= fo(r). 

We may clearly make the inductive assumption, which is true for r = 3, that 

the lemma holds for 0_~ g <-_ g ( r -  1), since 

f o ( r  - 1) = �89 

for r > 3. 

For larger g, we proceed as follows. The polyhedron Mr = { 3 , 2 r ; g ( r ) }  is 

constructed by joining across n, = ] f o ( r -  1) tubes from one copy of Mr-1 tO 

another, so that 

g(r )  = 2g(r  - 1) + n, - 1. 

Now the construction clearly allows us to join across any subset of n =< nr of 

these tubes; that is, in n, - n cases, we have the original faces F, F '  which would 

otherwise have been deleted. This clearly gives us any g, with 

g = 2g(r  - 1) + n - 1, 

where 1 _-< n _-< n,, and so in the range 

2g(r  - 1) <= g <= g(r) .  

For the remaining cases g(r  - 1) < g < 2g(r  - 1), write 

g'  = g - g(r  - 1). 
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By our inductive hypothesis, we can find a polyhedron M' ,  with g(M')  = g' and 

f,,(M') <=fo(r- 1). Moreover,  the above argument  and Lemma  9 show that we 

can assume that M '  has two faces which are also faces of conv M' .  The same 

being true of our M,_~, we can now use a familiar a rgument  (see Gri inbaum [5], 

exercise 5.2.17), to find a projective image M" of M' ,  such that Mr-~ and M" have 

one of these two faces of each in common,  while 

conv(Mr-i I.J M") = c o n v  Mr-~ t.J conv M", 

the two 3-polytopes having disjoint interiors. We now delete the shared face, 

giving a manifold M with 

g(M)  = g(Mr-,)+ g(M') = g, 

fo(M) = fo(r - 1) + fo(M') - 3 < fo(r), 

as we wished to  show. 

The argument  we have given above can be refined somewhat.  It is clear from 

the above discussion that any g => 1 can be expressed in the form 

g = g l + g 2 + ' " + g k ,  

where for each j, there is an rj with 

g,=g(r , )  (1 =< j<  k), 

and 

2g(r~ - 1 )<  gk <=g(r,,), 

rl  > r2 > " . ~ > r k - l  ~-~ rk >=3. 

Then there is a (triangulated) polyhedron M with g ( M ) = g  and 

fo(M) <= fo(rO + " "  + fo(r~ ) -  3(k - 1). 

Now for rl = 9, we have gl = g(rl) = 577 and fo(rl) = 576. Thus with k = 2 and 

r~ = r2 (and so fo(r2) = 576 also), the range of g2 above is 

482 = 2g(8) < g2 --< gl = 577. 

Hence for each g -- gl + g2 in the interval 1059 < g _-< 1154, we have a polyhed- 

ron M with g ( M ) = g  and fo(M)= 577 + 5 7 7 - 3  = 1149. Easy considerations 

now yield 

THEOREM 3. For each g >-1150 (at least), there is a polyhedron M with 

g ( M )  = g and fo(M) < g. 
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